MATH 504 HOMEWORK 7

Due Friday, December 7.

Problem 1. Let \mathbb{P} be a poset such that for every $p \in \mathbb{P}$, there are incompatible $q, r \leq p$. Suppose G is \mathbb{P} -generic. Show that $G \times G$ is not $\mathbb{P} \times \mathbb{P}$ -generic.

Problem 2. Let T be a normal Suslin tree, and let $(\mathbb{P}_T, <) = (T, >)$. Show that although \mathbb{P}_T has the countable chain condition, $\mathbb{P}_T \times \mathbb{P}_T$ does not. Hint: for every $x \in T$, pick two immediate successors p_x, q_x of x. Look at the set $\{(p_x, q_x) \mid x \in T\} \subset \mathbb{P}_T \times \mathbb{P}_T$.

Problem 3. Let κ be a regular uncountable cardinal and \mathbb{P} be a κ -closed poset. Show that \mathbb{P} preserves stationary subsets of κ , i.e. if $S \subset \kappa$ is stationary in the ground model, then S remains stationary in any \mathbb{P} -generic extension.

Hint: Given S, a name \dot{C} , and p, such that $p \Vdash ``\dot{C}$ is a club subset of κ ", show there is a sequence in the ground model $\langle p_{\alpha}, \gamma_{\alpha} \mid \alpha < \kappa \rangle$, such that:

- each $p_{\alpha} \leq p$ and $p_{\alpha} \Vdash \gamma_{\alpha} \in \dot{C}$.
- $\langle \gamma_{\alpha} \mid \alpha < \kappa \rangle$ is a club in κ ,

We say that a poset is κ -distributive if whenever $p \Vdash \dot{f} : \kappa \to ON$, then there is some $q \leq p$ and a function g in the ground model, such that $q \Vdash \dot{f} = \check{g}$.

Problem 4. (1) Show that if \mathbb{P} is κ^+ -closed, then it is κ -distributive.

- (2) Show that being κ -distributive is equivalent to the following property: If $\langle D_{\alpha} \mid \alpha < \kappa \rangle$ is a family of κ -many dense open sets, then $\bigcap_{\alpha < \kappa} D_{\alpha}$ is also open dense.
- (3) Suppose that \mathbb{P} is κ -distributive. Show that \mathbb{P} preserves κ^+ (it also preserves κ).

Problem 5. Let $S \subset \omega_1$ be a stationary set. Define $\mathbb{P} := \{p \subset S \mid p \text{ is closed and bounded}\}$, and set $p \leq q$ if p end extends q i.e. for some $\alpha, p \cap \alpha = q$.

- (1) Show that \mathbb{P} is countably distributive, i.e. if $p \Vdash \dot{f} : \omega \to ON$, then there is some $q \leq p$ and a function g in the ground model, such that $q \Vdash \dot{f} = \check{g}$. Note that this implies that \mathbb{P} adds no countable subsets of ω_1 , and hence it preserves ω_1 .
- (2) Suppose that $T := S \setminus \omega_1$ is also stationary. Let G be a \mathbb{P} -generic filter. Show that in V[G], T is nonstationary.

Remark 1. The above is an example of a forcing that destroys a stationary set, without collapsing cardinals. On the other hand you cannot use forcing to destroy a club set. More precisely, if $V \subset W$ are two models of set theory

and $V \models "D$ is club in κ ", then $W \models "D$ is club in κ ". Note that in the above problem it was important that S was stationary; i.e. you cannot add a new club through a nonstationary set.